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Problem Statement and Element Type/Model 

This project is based off of my senior project with Professor Kirill Zaychik (WCP 52 – Ultimate 

Beach Cart). Essentially this is a multi-terrain vehicle used primarily to transport beach gear to 

and from the waterfront in an efficient manner. When comparing all the available models 

currently on the market, WCP 52 is unique in its ability to easily traverse over sand, grass, 

cement, and dirt due to it being powered from the rear via treads. Treads have a huge advantage 

over wheels in that they have a much larger surface contact area with the ground. This allows for 

much better traction and can also distribute the weight of the cart more evenly, providing better 

stability. 

Treads work through a system of multiple belts and sprockets. Typically, one or more of the 

sprockets are driven via a drive shaft (drive sprocket) and the remaining ones are used to support 

the belt (idler sprockets). In order to optimize tread traversal, it is vital that the belt is properly 

tensioned. A belt that has too much slack will slide off the sprockets, immobilizing the cart and 

rendering the treads useless. 

There are many different tread designs and mechanical configurations. For the WCP 52 design, a 

three sprocket configuration was utilized. Essentially for this configuration, the drive sprocket is 

at the top with the two idler sprockets on the bottom as shown in Figure 1. In order to maintain 

tension on the tread belt, each of the idler sprockets was connected to the drive sprocket by a 

link. This formed a scissor linkage wherein the loading of the cart would spread the linkages, 

thus tensioning the belt around the tread frame. In order to support the integrity of the belt and to 

limit the motion of the scissor linkage, a spring is placed in between the scissor linkage. The 

objective of this analysis is to determine what the spring constant should be under three different 

loadings and two different linkage geometries.  

 



 

Figure 1. WCP 52 Ultimate Beach Cart (Left). Tread System (Right). 

 

Modelling 

The two geometries utilized for this study were an even length linkage and an uneven one. 

Figure 2 shows the first configuration and Figure 3 shows the second configuration. The first 

configuration has links with the length of 8 inches at an initial angle of 97.181 degrees. The 

second configuration has links with the lengths of 5 inches and 11 inches at an initial angle of 

88.958 degrees. These were selected because the sprockets are 4 inches in diameter and the belt 

is a loop with a total length of 40.6 inches. Also both of these dimensions allow for a contact 

surface length of 12 inches. Since both of these configurations satisfy both of these conditions, 

the next geometrical reference point defined was the spring placement. If the linkages were 

connected at the base and then drawn to be two right triangles, the endpoints of the springs 

would be located one third of the base away from the acute vertex. This is strategically placed 

here because that is where the centroid of the triangle would be, thus be the most effective spot 

to minimize the spring force. 

 

When modelling this on the ANSYS APDL, several idealizations were made. In order to 

minimize run time and to optimize calculation accuracy, each link for the scissor linkage was 

idealized as a line element (Element Type LINK180) and the spring was set to be a 

spring/damper element (Element Type COMBIN14). Since there were two different elements in 

each of the tread configurations assemblies, it is vital that each element is defined properly. 

When modelled on ANSYS APDL, the configurations look as displayed in Figure 2 and in 

Figure 3. 



 

Figure 2. Tread Configuration 1. Links are 8 inches. 

 

  

Figure 3. Tread Configuration 2. Links are 5 inches and 11 inches. 



Boundary Conditions 

As previously mentioned, in order to optimize ANSYS computational time and minimize errors, 

assumptions regarding design had to be made. Apart from idealizing the geometry, the boundary 

conditions and loading had to be determined. In both configurations, conditions were applied at 

the joint displacements, the allowable displacement of the scissor linkage, and the loading 

applied. 

 

Joint Displacement 

The scissor linkage configuration of the tread system is unique in the conditions applied to the 

nodes. For this simulation, as shown in Figure 2 and Figure 3, Node 1 was constrained in such a 

way that it was fixed and constrained in the X, Y, and Z displacements and the Y and Z rotations. 

This is done because ANSYS requires a fixed point in order to run a simulation. Next Node 2 

was constrained in such a manner that it was a pin connection. By this, no directional 

displacements were applied, so the only rotational constraint was the Z rotation. Finally, the last 

constraint was at Node 3. Since the tensioning mechanism requires that scissor linkage open up, 

it is essentially a roller support. To properly constrain this, the Y and Z directional displacements 

were held to zero and the X directional displacement was free. Additionally, the Y and Z 

rotations were fixed. 

 

Scissor Linkage Displacement 

When acquiring the parts for the tread assembly, the belt came in as a standard part along with 

the associated sprockets. The sprockets were able to fit snuggly within the rubber track due to 

matching pitches. It was crucial that the track was rubber in that it is elastic in nature. This is 

vital because it needs to hold the scissor linkage together. As mentioned earlier, a belt that is too 

slack will not function properly. However, a belt which is tensioned too tight would also render 

the assembly ineffective because the internal pitches of the rubber track would be overstretched 

and would not match up and coordinate with the grooves of the drive sprocket, which power the 

overall system. According to the instruction manual, it was advised that the tracks be stretched to 

an upper limit of 1.5 inches. 

 

Applied Load 

In order to properly tension the belt around the tread assembly, some kind of loading would have 

to be applied. This loading would be applied at Node 2, the apex. A downwards applied load 

here would push the linkage apart because the bottom of Node 3 is a roller connection. In this 

simulation, there were three applied loads. The loads were the weight of the empty beach cart 

(100 lbf total), the weight of maximum load that the cart can carry (300 lbf total), and (500 lbf 

total). A quarter symmetry for the loads were applied here because the front and the back of the 

cart splits the loading halfway and on top of that since the treads are on both the left and right 

side of the cart, the loading would be split halfway once again. From this, the applied loadings 

were 25 lbf, 75 lbf, and 125 lbf. 



Results 

The ANSYS APDL code derived the appropriate spring constants k for all six cases (2 

geometries with 3 loadings each) via assigning an arbitrary value for k and seeing what the 

displacements were by linear interpolation. This essentially narrowed down an answer until the 

displacement between Node 1 and Node 3 was between 1.495 inches and 1.505 inches. Attached 

is the tabulated data for the ANSYS Calculated Value, the Theoretical Value, associated 

Displacement as well as the percent error for the spring constant k. 

 

Trial ANSYS APDL Value 

(lbf/in) 

Theoretical Value 

(lbf/in) 

Displacement 

(in) 

Percent 

Error (%) 

Design 1 Load 1 8.425 8.267 1.4965 1.91 

Design 1 Load 2 25.312 24.8 1.5024 2.06 

Design 1 Load 3 46.253 41.338 1.5002 11.89 

Design 2 Load 1 6.208 6.209 1.4967 0.016 

Design 2 Load 2 19.001 18.628 1.4965 2.00 

Design 2 Load 3 36.218 31.047 1.5000 16.66 

 

 

Discussion 

From analysis of the data, it can be determined that the margin of error is relatively small 

between the ANSYS APDL determined values versus that of the hand verification. It may also 

be noted that the percent error had a general trend of increasing with the load. A possible cause 

of the errors may be from the idealizations, but more likely, the constraints. In the real world 

situation, the idler sprockets are both rollers at the bottom, therefore both nodes should be able to 

slide freely in the X direction. Unfortunately ANSYS requires that within a model that there be 

at least one fixed point constraint in order to successfully run its simulation. 

 

Overall, from the tabulated data, it would appear that Design 2, which has the uneven scissor 

linkage lengths would require a spring of a smaller constant k. By choosing Design 2 over 

Design 1, the design may be optimized with a more efficient spring, which would be a more 

financially conscious decision. 

  



Verification 

 

Configuration 1 Load 1 

 

 

 

 

 

 

 

A one half symmetry was utilized to figure out the spring force. The applied load was split in 

two and the internal axial force was calculated. Next, the horizontal component was calculated 

and the splitting force was obtained, which relates to the spring force and can be utilized to get 

the spring constant. 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐹𝑜𝑟𝑐𝑒 = 12.5 cos(48.6) = 8.266 𝑙𝑏𝑓 

𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝐹𝑜𝑟𝑐𝑒 = 8.266 sin (48.6) = 6.200 𝑙𝑏𝑓 

 

 

 

 

𝐹 = 𝑘𝑥 

2(6.200)𝑙𝑏𝑓 = 𝑘 × (1.5 𝑖𝑛) 

𝒌 = 𝟖. 𝟐𝟔𝟕 𝒍𝒃𝒇/𝒊𝒏 

 

 

 

 

P = 25 lb 

α = 48.6° 

12.5 lb 

Internal 

Force 

Splitting Force Splitting Force 
2*(Splitting Force) 

θ = 97.2° 

Splitting Force 

Spring Force 



Configuration 1 Load 2 

 

 

 

 

 

 

 

A one half symmetry was utilized to figure out the spring force. The applied load was split in 

two and the internal axial force was calculated. Next, the horizontal component was calculated 

and the splitting force was obtained, which relates to the spring force and can be utilized to get 

the spring constant. 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐹𝑜𝑟𝑐𝑒 = 37.5 cos(48.6) = 24.799 𝑙𝑏𝑓 

𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝐹𝑜𝑟𝑐𝑒 = 24.799sin (48.6) = 18.602 𝑙𝑏𝑓 

 

 

 

 

𝐹 = 𝑘𝑥 

2(18.602)𝑙𝑏𝑓 = 𝑘 × (1.5 𝑖𝑛) 

𝒌 = 𝟐𝟒. 𝟖 𝒍𝒃𝒇/𝒊𝒏 

 

 

 

 

 

P = 75 lb 

θ = 97.2° 

α = 48.6° 

37.5 lb 

Internal 

Force 

Splitting Force 

Spring Force 

Splitting Force Splitting Force 
2*(Splitting Force) 



Configuration 1 Load 3 

 

 

 

 

 

 

 

A one half symmetry was utilized to figure out the spring force. The applied load was split in 

two and the internal axial force was calculated. Next, the horizontal component was calculated 

and the splitting force was obtained, which relates to the spring force and can be utilized to get 

the spring constant. 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐹𝑜𝑟𝑐𝑒 = 62.5 cos(48.6) = 41.332 𝑙𝑏𝑓 

𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝐹𝑜𝑟𝑐𝑒 = 41.332sin (48.6) = 31.004 𝑙𝑏𝑓 

 

 

 

 

𝐹 = 𝑘𝑥 

2(31.004)𝑙𝑏𝑓 = 𝑘 × (1.5 𝑖𝑛) 

𝒌 = 𝟒𝟏. 𝟑𝟑𝟖 𝒍𝒃𝒇/𝒊𝒏 

 

 

 

 

 

P = 125 lb 

θ = 97.2° 

α = 48.6° 

62.5 lb 

Internal 

Force 

Splitting Force 

Spring Force 

Splitting Force Splitting Force 
2*(Splitting Force) 



Configuration 2 Load 1 

 

 

 

 

 

 

 

The applied load was split in two and the internal axial force was calculated. Next, the horizontal 

component was calculated and the splitting force was obtained, which relates to the spring force 

and can be utilized to get the spring constant. 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐹𝑜𝑟𝑐𝑒1 = 12.5 cos(23.57) = 11.457 𝑙𝑏𝑓 

𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝐹𝑜𝑟𝑐𝑒1 = 11.457sin (23.57) = 4.581 𝑙𝑏𝑓 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐹𝑜𝑟𝑐𝑒2 = 12.5 cos(65.39) = 5.206 𝑙𝑏𝑓 

𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝐹𝑜𝑟𝑐𝑒2 = 5.206sin (65.39) = 4.733 𝑙𝑏𝑓 

 

 

 

 

 

𝐹 = 𝑘𝑥 

4.581 + 4.733 𝑙𝑏𝑓 = 𝑘 × (1.5 𝑖𝑛) 

𝒌 = 𝟔. 𝟐𝟎𝟗 𝒍𝒃𝒇/𝒊𝒏 

 

 

P = 25 lb 

θ = 88.96° 

α = 23.57° 

12.5 lb 

Internal 

Force 

Splitting Force 1 

Spring Force 1 

Splitting Force Splitting Force 
SplittingForce1+SplittingForce2 

12.5 lb 

Internal 

Force 

Splitting Force 2 

Spring Force 2 

β = 65.39° 



Configuration 2 Load 2 

 

 

 

 

 

 

 

The applied load was split in two and the internal axial force was calculated. Next, the horizontal 

component was calculated and the splitting force was obtained, which relates to the spring force 

and can be utilized to get the spring constant. 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐹𝑜𝑟𝑐𝑒1 = 37.5 cos(23.57) = 34.372 𝑙𝑏𝑓 

𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝐹𝑜𝑟𝑐𝑒1 = 34.372sin(23.57) = 13.744 𝑙𝑏𝑓 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐹𝑜𝑟𝑐𝑒2 = 37.5 cos(65.39) = 15.617 𝑙𝑏𝑓 

𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝐹𝑜𝑟𝑐𝑒2 = 15.617sin(65.39) = 14.198 𝑙𝑏𝑓 

 

 

 

 

 

𝐹 = 𝑘𝑥 

14.198 + 13.744 𝑙𝑏𝑓 = 𝑘 × (1.5 𝑖𝑛) 

𝒌 = 𝟏𝟖. 𝟔𝟐𝟖 𝒍𝒃𝒇/𝒊𝒏 

 

 

P = 75 lb 

θ = 88.96° 

α = 23.57° 

37.5 lb 

Internal 

Force 

Splitting Force 1 

Spring Force 1 

Splitting Force Splitting Force 
SplittingForce1+SplittingForce2 

37.5 lb 

Internal 

Force 

Splitting Force 2 

Spring Force 2 

β = 65.39° 



Configuration 2 Load 3 

 

 

 

 

 

 

 

The applied load was split in two and the internal axial force was calculated. Next, the horizontal 

component was calculated and the splitting force was obtained, which relates to the spring force 

and can be utilized to get the spring constant. 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐹𝑜𝑟𝑐𝑒1 = 62.5 cos(23.57) = 57.286 𝑙𝑏𝑓 

𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝐹𝑜𝑟𝑐𝑒1 = 57.286sin (23.57) = 22.907 𝑙𝑏𝑓 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐹𝑜𝑟𝑐𝑒2 = 62.5 cos(65.39) = 26.028 𝑙𝑏𝑓 

𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔𝐹𝑜𝑟𝑐𝑒2 = 26.028sin (65.39) = 23.663 𝑙𝑏𝑓 

 

 

 

 

 

𝐹 = 𝑘𝑥 

22.907 + 23.663 𝑙𝑏𝑓 = 𝑘 × (1.5 𝑖𝑛) 

𝒌 = 𝟑𝟏. 𝟎𝟒𝟕 𝒍𝒃𝒇/𝒊𝒏 

 

 

P = 25 lb 

θ = 88.96° 

α = 23.57° 

62.5 lb 

Internal 

Force 

Splitting Force 1 

Spring Force 1 

Splitting Force Splitting Force 
SplittingForce1+SplittingForce2 

62.5 lb 

Internal 

Force 

Splitting Force 2 

Spring Force 2 

β = 65.39° 



ANSYS APDL Scripts 

 

 

  



 


