

REMNANT-BASED METRICS FOR
SIMULATOR FIDELITY

Tyler Wei, Kirill Zaychik

Department of Mechanical Engineering

Thomas J. Watson School of Engineering and Applied Science
State University of New York, Binghamton

Submitted: Friday, May 12th, 2016

Project Sponsored by the NASA – NY Space Grant Fellowship

ACKNOWLEDGMENTS

 I would like to thank the former contributions to this study exercised by Noah B. Singer, Nathan

Sprenkle, and Dr. Frank Cardullo. I would also like to thank the participating members of the 33
rd

Annual Flight and Ground Vehicle Simulation Course at Binghamton University.

Project Sponsored by the NASA – NY Space Grant Fellowship || 1

[1] N. Tesla, Patent US613809 – Method of and Apparatus for Controlling Mechanism of Moving
Vessels or Vehicles (1898)

[2] Kirill Zaychik and Frank Cardullo. Simulator Sickness: The Problem Remains, AIAA Modeling
and Simulation Technologies Conference and Exhibit, Guidance, Navigation, and Control and
Co-located Conferences (2003)

[3] N.B. Singer, et al. A study of Human Teleoperation of a Space Manipulators Using
Simulation (2016)

[4] W. Stallings, Wireless Communications and Networking (2002)

REMNANT-BASED METRICS FOR SIMULATOR FIDELITY

Tyler Wei, Kirill Zaychik
Department of Mechanical Engineering

Thomas J. Watson School of Engineering and Applied Science
State University of New York, Binghamton

ABSTRACT

 The examination of realism and fidelity

for scientific modelling and simulation is critical

to the advancement of developing better models

of teleoperation in extreme conditions. For more

than over a century, the subject of teleoperation

has been investigated in the field of man-

machine systems. Teleoperation, the method of

remotely controlling a device from a distance

has many practical applications, namely

operations in outer-space which are com-

mandeered from Earth. One of the largest issues

which pose to be problematic in Earth-Space

teleoperations is that over large distances, signal

delays exist. This particular study explores the

effects of a time and signal delay on the ability

of the operator to perform the teleoperation task.

The task, manipulation of a robotic inceptor to

dock on a marked target on an orbiting satellite

in outer-space around Earth through a computer

simulation, had various time delays between 0

milliseconds to 2000 milliseconds. The

computer simulation was developed in

MATLAB and the experiment was conducted by

having 20 subjects each undergo 15 different

trials of the simulation with various time

parameters changed each time. From the testing

and analysis, it was revealed that as the signal

delays increase, there is more chaotic motion as

well as uncertainty in the pilot control behavior.

INTRODUCTION

 Since the late 19
th
 century, teleoperation

has been a topic of interest as pioneered by

Nikola Tesla to control from a distance, the

operation of propelling engines, the steering

apparatus, and other mechanisms carried by

moving bodies
1
. Teleoperation is defined as a

method of controlling a device from a distance

and it allows for human control and remote

manipulation of objects in extreme or hazardous

environments. One such extremity is outer-space

where the vacuum, the lack of protection from

radiation, and extreme temperature changes

which make teleoperation ideal
3
.

 In vast distances such as that from a

control station on Earth to geosynchronous

transfer orbit, the delay is merely a fraction of a

second. However, to the moon, the delay

increases to 1.3 seconds; this delay becomes

minutes between planets, and then years

between stars as distances increase
4
. The

experiment outlined aims to construct a better

understanding on how communication signal

delays affects the operator performance in a

teleoperation situation via testing wider ranges

of delays with higher precision
3
.

 Current research has been concentrated

on investigating the effects of human interaction

with exposure to virtual environments such as

vehicle simulators. Typically, these simulators

are utilized to remotely operate equipment or

vehicles over large distances, namely from earth

to outer-space. It is well known that the existing

time delays between the simulator operation and

the real-time vehicle movement may affect the

operator performance. However, there is little

data on how the different ranges of the signal

Project Sponsored by the NASA – NY Space Grant Fellowship || 2

[2] Kirill Zaychik and Frank Cardullo. Simulator Sickness: the Problem Remains, AIAA Modeling
and Simulation technologies Conference and Exhibit, Guidance, Navigation, and Control and
Co-located Conferences (2003)

delay discrepancies influence the operator

workload. It is speculated that the operator

workload is directly correlated with the amount

of time/signal delay. There is some anecdotal

evidence indicating that under certain conditions

the performance is maintained by an operator at

a certain level whereas workload is increased
2
. It

is proposed to measure both performance and

workload during the simulator run in order to

prove or disprove this hypothesis.

 One of the prime objectives of this

investigation is to develop new metrics for

simulator fidelity assessment based upon

objective parameters. Data acquired throughout

the experimental test will further bolster the

aforementioned metrics. In this study, fifteen

trials of time delays were recorded from 0

milliseconds to 2000 milliseconds. The objective

for this research is to study and acquire data for

objective benchmarks for simulator fidelity via

operator control behavior analysis. A

quantitative metric is to be derived to correlate

user workload and ease of simulator control.

These results can be utilized to provide enough

data to recreate a model of the human operator

through the theories of soft computing based on

objective parameters as well
2
. Such a model

would enable further research and studies in the

controls of space manipulators between earth

and outer-space and how the various time and

signal delays can have an effect on the operator

performance.

METHODOLOGY

 In this experiment, the subjects

controlled and guided a robotic inceptor in

outer-space to dock on a marked target on a

satellite through a computer simulation. The

main controller used to undergo the simulation

was the Logitech Force 3D Pro Joystick. This

joystick is a 3-axis joystick allowing for roll,

pitch, and yaw with various buttons and a

throttle paddle. These controls allowed for the

computer simulation robotic inceptor arm to

move up and down, left and right, and forward

and backwards are various speeds. The robot

inceptor, modeled as a silver rectangular box on

the bottle center of the screen was to be moved

into the center of the white square on the

satellite surrounded by the red box using the

joystick. Once successfully placed the joystick

would provide haptic feedback, the red box

would turn green, and the word “latched” would

appear at the top of the screen. Throughout the

testing, each of the subjects would complete 15

trials with various simulation parameters

changed each time, specifically the time delay

Figure 1. The Simulation Virtual Environment. Inceptor is at the bottom center.

Project Sponsored by the NASA – NY Space Grant Fellowship || 3

ranging from 0 milliseconds to 2000

milliseconds. These experimental variables were

added to intentionally cause latency between the

time the operator sent a command through the

joystick and when the inceptor would move on

the screen. The signal delay was added by

sampling joystick movements at regular periodic

intervals (40 Hz) and storing into a delay

buffer
3
. The simulation of differing delays was

accomplished by having the program script

select a joystick sample at a fixed depth in the

buffer.

 Collisions and latch positions with the

satellite had to be inspected programmatically.

Essentially, to differentiate docking and

collisions, the coordinates of the marked target

were checked via test statements. In the event of

a collision, the inceptor arm was given a velocity

negative to the collision direction. This would

knock the arm away from the satellite.

 Figure 1 is a screenshot of the

simulation environment, created through the use

of Simulink and MATLAB. Simulink was

utilized to exhibit the virtual outer-space

environment read from a VRML (VR

Modelling) file. This consisted of 4 primary

elements: the effector (robotic inceptor) arm, the

satellite, the planet, and the star field. The only

interactive element was the robotic inceptor,

which was controlled and manipulated via the

MATLAB script when running the simulation.

The satellite, planet, and star field were all

environmental elements, designed to adjust

according to the inceptor movement to provide

visual reference points which aids in ease of user

interaction. These objects were all imported

from the Simulink object library with different

graphics mapped over them as skins. The

simulation also provided a HUD (Heads Up

Display) on the top left corner which included

the trial/test status, instructions, as well as the

distance to the target.

 Initially, the MATLAB script was a very

simple kinematic method of position calculation.

The magnitude of joystick roll, pitch, and yaw

was recorded to translate the end effector that

magnitude in the virtual environment, which was

then scaled down or up via the throttle for speed

control. In reality for simulator fidelity, the

element of dynamics had to be added. The

dynamics model was added by adding an

integral controller to the roll, pitch, and yaw of

the joystick input. Figure 2 below indicated the

block diagram noting the feedback loop which

added dynamics. Figure 3 shows how this was

implemented into the MATLAB script.

%% SIMULATION LOOP
%---
roll_d_old = 0;
roll_old = 0;
pitch_d_old = 0;
pitch_old = 0;
yaw_d_old = 0;
yaw_old = 0;
%% READ JOYSTICK
%---
 % read joystick vals
 [axes, buttons, cap] = read(joy);

 roll = axes(1);
 pitch = axes(2);
 yaw = axes(3);
 throttle = -axes(4);

 roll_d = roll_d_old+0.0167*roll_old;
 pitch_d = pitch_d_old+0.0167*pitch_old;
 yaw_d = yaw_d_old+0.0167*yaw_old;

>>>BREAK IN CODE<<<

 sens_mult = .51 + (throttle * .5);

 sens_x = 1 * sens_mult;
 sens_y = 1 * sens_mult;
 sensy_z = .6 * sens_mult;

 % joystick readings - velocities
 % V = [right_left up_down front_back pitch yaw

roll];
 v_x = roll * sens_x;
 v_y = pitch * sens_y;
 v_z = front_back * sensy_z;

 roll_d_old = roll_d;
 roll_old = roll;
 pitch_d_old = pitch_d;
 pitch_old = pitch;
 yaw_d_old = yaw_d;
 yaw_old = yaw;

 Figure 3. (Above) Dynamics modelled into MATLAB

(Highlighted). NOTE: “>>>BREAK IN CODE<<<”

was put into substitute several lines of code.

Figure 2. (Above) Dynamics modeled into the block

diagram. The integral controller was added via the

“1/s” feedback

[3] N.B. Singer, et al. A study of Human Teleoperation of a Space Manipulators Using Simulation
(2016)

Project Sponsored by the NASA – NY Space Grant Fellowship || 4

This added difficulty to the experiment and

allowed the end effector to coast when impulse

is added suddenly against the original movement

direction
3
.

 For experimentation and the testing

procedure, data was collected from 20 test

subjects, 19 male subjects and 1 female subject.

The ages for the subjects ranged from 19 to 31

with the median age being 20 and the mean age

being 21. Each of these test subjects were

individually tested all 15 trials with the

simulation.

 The testing included 2 steps: training

and recorded trials. The training period was

before the data acquisition began. The subjects

had the opportunity to complete training runs

until reaching the learning curve to feel

comfortable using the joystick to control the

robotic inceptor. Each subject was encouraged to

take as many training runs and as much time as

necessary to feel comfortable with the joystick.

Once the facilitator was assured that the subject

was comfortable enough to proceed with the

simulation and joystick interface controls, the

subject was able to proceed to the recorded trials

phase. During the recorded trials, the 15 trials

with changing signal delays were run. Each of

the subjects performance metrics were measured

and recorded during this time for each of the

trials. The following data was recorded: the time

to complete each trial, the number of collisions

with the satellite during each trial, and the

number of restarts for each trial. The time

parameters which changed each trial were the

time delays in such order: 0 ms, 600 ms, 1000

ms, 1400 ms, 1000 ms, 2000 ms, 1600 ms, 400

ms, 1800 ms, 200 ms, 1200 ms, 2000 ms, 600

ms, 800 ms, and 1600 ms. The main indicator

was the time it took for the subject to reach the

target.

RESULTS

 Data was acquired in the form of a 7

column .csv file by which were represented by

the delay, the time, roll stick, pitch stick, yaw

stick, throttle, and front-back (forward or

reverse). This information was collected for all

fifteen trials for all 20 subjects and the controller

variables in roll, pitch, yaw, and throttle were

plotted against time as such in figure 4.

Once the control behavior data was plotted,

some form of metric needed to be identified and

to distinguish “good” control behavior and

“bad” control behavior. The two general

methods for identifying metrics are analytically

and Human Operator in-the-loop Analysis
5
. For

the analytical approach, time and frequency

response analysis is required and for the Human

Operator in-the-loop Analysis, the typical

analyses are Root Mean Square (RMS) Error,

Power Spectral Density (PSD) Analysis, and the

NASA TLX
5
. This project utilized the NASA

TLX (Task Load Index) to gauge which trials

the operators had the most difficulty with,

combined with the Analytical Approach of Time

and Frequency Analysis, and most importantly,

[3] N.B. Singer, et al. A study of Human Teleoperation of a Space Manipulators Using
Simulation (2016)

[5] Cardullo, Frank. 33rd Annual Flight and Ground Vehicle Simulation Course Presentation.
(2017)

Figure 4. Dataset 1 Trial 1 Joystick Data Plots vs. Time

Project Sponsored by the NASA – NY Space Grant Fellowship || 5

the PSD Analysis. This study specifically

utilized the Integrated PSD Analysis in that this

measures and calculates the power that is in a

signal by a mathematical technique in the

MATLAB Signal Processing Toolbox similar to

the Fast Fourier Transform
5
. From the collected

pilot signal, the PSD could be obtained at

different frequencies. Ideally, the peak

migrations of the PSD plots are indicative of the

delay. A more pronounced peak shift is the

result of more operator movement, therefore

meaning that the operator is working harder,

thus producing more power due to there being

more delay. In this study, rather than seeing

distinguishable peak shifts with large delays, the

peaks themselves become much more

pronounced as exhibited in Figure 5. PSD

Analysis were performed on the roll stick, pitch

stick, and the “Combined Roll+Pitch” or

Combined. The Combined Roll+Pitch was

calculated as shown.

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = √𝑅𝑜𝑙𝑙2 + 𝑃𝑖𝑡𝑐ℎ2

This was applied to each of the individual time

recorded time signals per trial. This was justified

because it is a method to transform the rotational

joystick movements to a translational straight-

line movement analogous to vector addition.

Since y-axis simulation translation is a function

of roll and x-axis simulation translations is a

function of pitch, the resultant translation can be

expressed as the sum of roll and pitch.

 Next, the PSD for delays were

integrated with respect to frequency to generate

the Integrated PSD Charts for the No Delay (0

ms), Medium Delay (1000 ms), and High Delay

(2000 ms). As depicted in Figure 6, as higher

delays get introduced, there is more power

provided by the operators to the joystick to try

an offset the errors caused by the delay.

Figure 5. PSD Plot of Pitch under No Delay (0 ms),

Medium Delay (1000 ms), and High Delay (2000 ms)

[5] Cardullo, Frank. 33rd Annual Flight and Ground Vehicle Simulation Course Presentation. (2017)

Figure 6. Integrated PSD Plots of Roll, Pitch, and

Combined Roll+Pitch

Project Sponsored by the NASA – NY Space Grant Fellowship || 6

From the resulting Integrated PSD charts, it

seemed to be the general trend that there is more

power applied because of added delays. To

further this claim, the PSD data was put together

for all 20 Datasets which resulted in the

development of Figure 7.

 As evident in the chart, as a larger signal

delay is introduced within the simulation, not

only was there more power, but also more

deviation within the collected data. This is

indicative of the original hypothesis that with the

introduction subsequently increasing time

delays, there is more difficulty in acquiring a

prediction the pilot control behavior. Essentially,

under very high signal delays, there is both more

unnecessary operator calibration movements and

more data deviation as well as pilot behavior

unpredictability.

DISCUSSION

Due to the fact that much of this study was

pioneered from A Study of Human Teleoperation of a

Space Manipulators Using Simulation (2016) by

Noah B. Singer, Nathan Sprenkle, and Dr. Frank

Cardullo at the Man-Machine Systems Lab at

Binghamton University, it is critical to review some

of the metrics covered by their team such as trial time

as well as collision count.

The data was collected from all of the

subjects into one aggregate dataset, which was

then analyzed using Microsoft Excel. As

mentioned earlier, two additional metrics on top

of the PSD and Integrated PSD Analysis are the

measured time trials and the collision count. The

time trials are simply just the time the subject

took to traverse the simulator world with the end

effector from the initial starting position to the

satellite target.

Figure 7. Integrated Power Spectral Density Charts were averaged based on stick control

and delay for all 20 subjects. Error bars of one standard error were implemented.

Project Sponsored by the NASA – NY Space Grant Fellowship || 7

The data for that is presented graph-

ically below in Figure 8.

The x-axis represents the time delay in

milliseconds and the y-axis represents the

average performance of the test subjects at that

time delay. The data was normalized using the

baseline performance time of zero delay so that

at each time delay, the value of the Test Subject

Performance is how many time longer it took the

subjects to complete the trial at that delay versus

no time delay.

There is a clear trend demonstrated by

the data: as time delay increases, the time

required to complete the trial increases. At a

delay of 1 second, it took the subjects 2.32 times

longer to complete the trial than at zero delay.

At a delay of 2 seconds (the maximum delay

used in this study), subjects took 3.86 times

longer to complete the trial than at zero delay.

It appears that the relationship between

time delay and subject performance is linear

with an R-squared value of 0.985, however,

further studies with larger ranges of time delays

and more data points are required to definitively

determine the mathematical relationship

between time delay and subject performance. It

is very clear from the data that time delay, and

thus communication delay, has a significant

effect on an operator’s ability to control a robot.

Another set of data that were collected were the

number of collisions with the satellite during

each trial. A collision in this simulation is

defined as when the controlled end effector

makes contact with any part of the satellite

which is not the target. When a collision occurs,

the joystick produces a haptic feedback

informing the user of a collision. This data is

important because in a real life scenario, every

collision between 2 objects in space is likely to

cause damage and be expensive to repair. The

collision data was averaged from all of the test

subjects for each trial and is reported below in

Figure 9.

It is difficult to draw conclusions from

the collision data. Although there appears to be a

positive upward trend in the number of

collisions as time delay increases, the presence

of outliers makes it difficult to draw any

significant conclusions. More testing, over a

larger range of time delays, coupled with a

larger pool of test subjects, may show that there

is indeed a relationship therefore, more testing is

needed in the future.

Investigations were also made into

whether the amount of training runs the subject

used to familiarize themselves with the

simulation and joystick affected the statistical

spread of their data. There appears to be no

correlation between the standard deviation of the

data and the amount of training runs taken by the

subject based on the data collected from this

experiment. However, the scope of this study is

limited so further investigations into the effect of

training on the statistical spread of the data are

recommended.

Figure 8. Time trials with introduced delays

Figure 9. Average number of collisions per time delay

Project Sponsored by the NASA – NY Space Grant Fellowship || 8

CONCLUSION

 Teleoperation and simulation is a huge

topic as well as a sector in applied science and

engineering in that it allows for the human

remote controlling of machines and devices into

places inaccessible by humans. This paves the

path for a world of endless opportunities for

research, learning, and development.

Communications delay can negatively

affect the abilities of a human operator who is

controlling a robot in space from the surface of

Earth. To study the effects of communication

delay, a simulation was developed in MATLAB

and Simulink. The simulation allows subjects to

be tested for the effects of communication delay

by simulating the control of a robotic inceptor in

space which is intended to latch with a satellite.

The test subject controls the inceptor with a

joystick and completes 15 trials with different

communications delays.

Overall, 20 test subjects were tested

using the simulator. The data from the simulator

shows a clear trend that with an introductions

with a larger signal delay in the simulation, there

was more power, meaning that there was more

operator to joystick movement and more

deviation within the collected data. This bolsters

the claim of the original hypothesis that with

subsequently increasing signal delays, there is

more difficulty in acquiring an operator control-

behavior prediction. Essentially, with high signal

delays, there is both more unnecessary pilot

calibration movements to correct the path error

and more data deviation as well as a more

chaotic pilot control behavior.

FUTURE PLANS

 The simulation is improved from the

initial stage, there is still much that could be

done to improve the experiment for future years.

These changes include improving the UI,

recording additional data, improving satellite

bounce, and refining delay techniques.

Additional Data Acquisition: One issue that

emerged after the human subject trials was the

lack of recorded real time position tracking.

During the simulation, the position of the end

effector was tracked however, this was neither

recorded nor stored within the .csv file. This

posed to be a problem in trying to figure out the

distance-to-target vs. time comparisons within

different signal delays. It is crucial that the

distance-to-target is recorded vs. time for the

future.

Improved UI: Currently the simulation and UI

are functional but simplistic. To make the test

appear more realistic, better models for the

Earth, satellite, and starfield could be used.

Improved Satellite Bounce: The simulation

currently only handles collisions between the

main body of the satellite and the effector. This

was improved from the previous system which

included more complete bounce off logic but

poor bounce off effect, simply resetting the

subject’s position. Ideally the simulation would

be able to detect collision with the peripheral

panels and components attached to the satellite

body. Additionally, the current rebound

algorithm is simple: apply a negative velocity in

the axis of collision for a set number of cycles.

A more realistic simulation might more

accurately model rebound off the satellite body.

Delay Accuracy: Additionally, the way delays

are implemented is rather simplistic. As

mentioned earlier, a fixed delay is built into the

program loop and control data is put into a

buffer to delay controls data manifesting in the

simulation. A more exact simulation might

dynamically add delay to ensure each simulation

loop executed in as close to uniform time as

practical in a MATLAB script running on a non-

realtime system.

Additional Analysis: There are some analyses on

the data that due to time constraints could not be

analyzed. One is to analyze to see if there is any

improvement throughout the trials as the

experiment progresses. Since a rough

mathematical model could be developed to fit

the data, the user’s performance could be

predicted at each delay value. Then, by ordering

in the order that the user was tested in rather

than ordering by increasing delay and comparing

actual performance to modeled performance, it

Project Sponsored by the NASA – NY Space Grant Fellowship || 9

could be seen how much the user improves over

the course of the experiment and remove this

possible learning bias from the data.

Accuracy Data: Though we already collect

many different data points, there is even more

data we considered collecting but did not. First

was accuracy of docking. The area that a subject

can successfully dock in is about twice the area

of the effector head. Anywhere inside this area is

considered a successful dock but the position

from ideally centered docking is not recorded.

Other data that might prove insightful could be

deviation off of the ideal path to target (averaged

or maximum) to measure overcorrecting

movement by the test subject.

Spinoff Experiment: As mentioned above, we

believe a more ideal experiment would test

overcorrection and accuracy in addition to (or in

lieu of) time to complete task. Something that

was observed was that in addition to the task

taking longer with the delay, subjects began to

make large over corrections at higher delays. A

possible experiment may include markers along

an ideal path that the subject must follow to

reach the target, measuring deviation from the

path. This is explored briefly by C.M Korte, et.

al. in Effect of Time Delay on Teleoperation

Accuracy and Efficiency but could be further

expanded on. A variant of the experiment might

simply move the user forward at a constant

speed and measure accuracy along a marked

path and overcorrection for greater insight on

accuracy with delay.

LITERATURE CITED

[1] N. Tesla, Patent US613809 – Method of and

Apparatus for Controlling Mechanism of

Moving Vessels or Vehicles (1898)

[2] Kirill Zaychik and Frank Cardullo. Simulator

Sickness: The Problem Remains, AIAA

Modeling and Simulation Technologies

Conference and Exhibit, Guidance,

Navigation, and Control and Co-located

Conferences (2003)

[3] N.B. Singer, et al. A Study of Human

Teleoperation of a Space Manipulators Using

Simulation (2016)

[4] W. Stallings, Wireless Communications and

Networking (2002)

[5] Cardullo, Frank. 33rd Annual Flight and

Ground Vehicle Simulation Course

Presentation. (2017)

Project Sponsored by the NASA – NY Space Grant Fellowship || 10

APPENDIX I: USER GUIDE

To run the simulation, a Windows

computer is needed with a joystick. The

joystick must have at least 2 axis of control,

a throttle control, and 4 buttons. In our

procedure, 2 monitors were used. One with

the simulation for the test subject, and one,

facing another direction for the facilitator to

fill out information and observe experiment

data. First open MATLAB with the most

recent file (simulation_joystick_0510.m as

of the righting of this guide). Run the script.

The following prompt will show

“Collect Data? (1/0)”. For debugging and

writing code without saving data to the excel

sheet, enter 0, otherwise enter 1. If

collecting data with a test subject enter the

following data when scripted, Age numeric,

Sex as a single letter (“M” or “F”), and

Subject Number as a number. Subject

number determines which row in the data

file to save the subject’s data to (currently

Simulation_Data_Spring_2016.xlsx). Note:

This spreadsheet must be closed before

starting a trial or the program will throw an

error.

Simulink should open with the

environment described by the most recent

WRL file (currently satellite3.wrl).

When testing subjects, first read

them the first half of the test protocol (Test

Protocol 2016.docx) explaining training and

the simulator environment. As outlined in

the test protocol, the goal is to maneuver the

end effector (grey box) into the center of the

red box on the satellite. Controls are as

follows:

- Joystick axis 1 (+/): up/down movement

- Joystick axis 2 (+/): left/right movement

- Joystick buttons 1 & 2 (trigger and left

side grey button): forward/back

movement

- Joystick throttle (grey paddle at base of

joystick): movement speed

- Joystick button 3 : start trial or reset

position

- Joystick button 4 : begin testing

Have the test subject experiment with the

controls and the simulation. We suggest a

minimum of 5 successful dockings. When

the subject feels they have a solid

understanding of the simulation

environment, read them the second half of

the test procedure. This outlines that delay

will be introduced in various trials and the

procedure for restarting trials; have them

begin the trials by starting a training run,

then pressing 4 on the joystick, as prompted

on screen. The text “WAITING: TRIAL 1”

should be displayed on screen, before

experimentation begins.

 Have the subject press 3 to begin a

trial. Each trial with show the trial number

and delay amount on the experimenter’s

MATLAB console. Observe their progress

throughout the 15 trials. After completing

the final trial, press 3 on the joystick so that

the text “TRIALS COMPLETE” appears

on screen. The facilitator's MATLAB

console will read “Press enter to exit”. After

hitting enter, all data should have been

recorded and the simulation may be safely

exited.

Project Sponsored by the NASA – NY Space Grant Fellowship || 11

APPENDIX II: MATLAB SIMULATION SOURCE CODE

%% JOYSTICK/WORSKPACE INIT
%---

% clearing the workspace and screen
clear all
clc

% setup joystick
id = 1;
joy = vrjoystick(id, 'forcefeedback');

% return joystick capabilities
c = caps(joy);

%% DATA COLLECTION
%---
testing = input('Collect data? (1/0)');
age = 0;
gender = '';
subj_num = 50;

% collect subject details
if testing
 age = input('enter age: ');
 gender = input('enter gender(m/f): ','s');
 subj_num = input('enter your subject number: ');
end

%% FILE I/O
%---

% subject numbering starts at row 5, so offset by 4
row_num = 4 + subj_num;

% open excel file to write data (write to 3 sheets)
file = ('Simulation_DATA_Fall_2016.xlsx');
if testing
 xlswrite(file,subj_num,'times',['A' num2str(row_num)]);
 xlswrite(file,subj_num,'hit count',['A' num2str(row_num)]);
 xlswrite(file,subj_num,'trial attempts',['A' num2str(row_num)]);

 xlswrite(file,age,'times',['C' num2str(row_num)]);
 xlswrite(file,age,'hit count',['C' num2str(row_num)]);
 xlswrite(file,age,'trial attempts',['C' num2str(row_num)]);

 xlswrite(file,gender,'times',['B' num2str(row_num)]);
 xlswrite(file,gender,'hit count',['B' num2str(row_num)]);
 xlswrite(file,gender,'trial attempts',['B' num2str(row_num)]);
end

% delay in ms

Project Sponsored by the NASA – NY Space Grant Fellowship || 12

delay_ms = xlsread(file,1,'D2:R2');

% read number of delay slots as array, one column is one test case
delay_number = delay_ms./50;
delay_number(16) = 0;

trial_number = 1;
training_number = 1;

csv_file= strcat('joystick_data_', num2str(subj_num), '.csv');

%% LOAD VIRTUAL WORLD
%---

% open virtual world from satellite.wrl - previosly test.wrl
w = vrworld('satellite3.wrl', 'new');
open(w);

% create the vrfigure showing the virtual scene
fig = vrfigure(w);
ref = vrnode(w, 'reference');

% go to a viewpoint suitable for user navigation
set(fig, 'Viewpoint', 'Effector Camera');

% get the manipulated effector node
effector = vrnode(w, 'Effector');

% read plane initial translation and rotation
initialTranslation = [30 0 0];
originalTranslation = effector.translation + initialTranslation;
originalRotation = effector.rotation;

% LATCH POSITION
latchPosition = [-0.75 75 189];
err_x = 0;
err_y = 0;
err_z = 0;
dist_to_target = 0;

% set the HUD display text
offset = vrnode(w, 'HUDOffset');
offset.translation = offset.translation + [-0.15 1.9 0];

hudtext = vrnode(w, 'HUDText1');
hudstr = sprintf(strcat(...
 '-- TRAINING --\n', ...
 'Press ''3'' to reset position\n', ...
 'Press ''4'' to end training\n' ...
));
hudstr = textscan(hudstr, '%s', 'delimiter', '\n');
hudtext.string = hudstr{1};

Project Sponsored by the NASA – NY Space Grant Fellowship || 13

%TEST COLOR CHANGE
bottom_box = vrnode(w, 'bottom_box');
bottom_box = getfield(bottom_box, 'children');
top_box = vrnode(w, 'top_box');
top_box = getfield(top_box, 'children');
left_box = vrnode(w, 'left_box');
left_box = getfield(left_box, 'children');
right_box = vrnode(w, 'right_box');
right_box = getfield(right_box, 'children');

%% VARIABLE INIT
%---

% rows for generating delay
buffer_len = 80;

% whether the user has given up or proceeded to next rial
skip_trial = 0;
begin_trial = 0;

% velocity and buffer values
v = zeros(1,7);
buffer = zeros(buffer_len+1,7);
bounce_max = 20;
bounce = 0;

% joystick bounce
bounce_dir = 0;
joy_axis = 0;
joy_force = 0;

% trial vars
sim_state = 'wait_training';
trial_attempts = 1;
hit_count = 0;
block_signal = 1;

times = zeros(1,15);
reached_target = 0;
timer_trial = tic;

% latch vars
latch_max = 30;
latch_loop = latch_max;
latch_velocities = [0 0 0];

joy_data = [0 0 0 0 0 0 0];
n = 1;

% dlmwrite(csv_file,joy_data,'delimiter',',','-append');
joy_data_abs = 0;
joy_data_interval = 0;
tJoyData = tic;
% csvwrit
% joy_data(n, 1) = 'delay';

Project Sponsored by the NASA – NY Space Grant Fellowship || 14

% joy_data(n, 2) = 'time';
% joy_data(n, 3) = 'x';
% joy_data(n, 4) = 'y';
% joy_data(n, 5) = 'yaw';
% joy_data(n, 6) = 'throttle';
% joy_data(n, 7) = 'z';

%% SIMULATION LOOP
%---

roll_d_old = 0;
roll_old = 0;
pitch_d_old = 0;
pitch_old = 0;
yaw_d_old = 0;
yaw_old = 0;

while isvalid(fig)
 tSimLoop = tic; % per kerchunk iteration time (for delay)
 joy_data_interval = toc(tJoyData);
 tJoyData = tic;
 % tAbsLoop = tic; % testing

%% READ JOYSTICK
%---

 % read joystick vals
 [axes, buttons, cap] = read(joy);

 roll = axes(1);
 pitch = axes(2);
 yaw = axes(3);
 throttle = -axes(4);

 roll_d = roll_d_old+0.0167*roll_old;
 pitch_d = pitch_d_old+0.0167*pitch_old;
 yaw_d = yaw_d_old+0.0167*yaw_old;

 cap_up_down = 0;
 cap_right_left = 0;
 front_back = 0;

 if(cap == 0), cap_up_down = 1;
 elseif (cap == 180), cap_up_down = -1;
 elseif (cap == 90), cap_right_left = 1;
 elseif (cap == 270), cap_right_left = -1;
 end

 if (buttons(1) == 1 && buttons(2) == 1), front_back = 0;
 elseif (buttons(1) == 1), front_back = -1;
 elseif (buttons(2) == 1), front_back = 1;
 end

Project Sponsored by the NASA – NY Space Grant Fellowship || 15

 sens_mult = .51 + (throttle * .5);

 sens_x = 1 * sens_mult;
 sens_y = 1 * sens_mult;
 sensy_z = .6 * sens_mult;

 % joystick readings - velocities
 % V = [right_left up_down front_back pitch yaw roll];
 v_x = roll * sens_x;
 v_y = pitch * sens_y;
 v_z = front_back * sensy_z;

 roll_d_old = roll_d;
 roll_old = roll;
 pitch_d_old = pitch_d;
 pitch_old = pitch;
 yaw_d_old = yaw_d;
 yaw_old = yaw;

 % velocity values
 v = [v_x v_y v_z 0 0 0 0];

 % timestamp speed samples
 s_time = toc(timer_trial);

%% DELAY
%--
% mouse values are sampled at 40Hz and loaded into a buffer at position 1
% delay is chosen by sampling from a later row in the buffer
% specifically delay_number(trial_number)+1

 % shift mouse samples to next index in buffer
 if delay_number(trial_number) ~= 0
 %fprintf('delay');
 for j = buffer_len:-1:1
 buffer(j+1,:) = buffer(j,:);
 end
 end

 % load current samples into buffer at row 1
 buffer(1,:) = v;

 % grab later input value from the buffer to achieve delay
 v = buffer(delay_number(trial_number)+1,:);

 % add .025s delay to each iteration (e.g. trial_number of 4 selects from

4th row providing .1s delay)
 % pause(0.025);

%% SIMULATION FLOW
%--
 switch sim_state
 case 'training'
 block_signal = 0;
 %n = n + 1;

Project Sponsored by the NASA – NY Space Grant Fellowship || 16

 % HUD
 hudstr = sprintf('-- TRAINING --\nPress ''3'' to reset

position\nPress ''4'' to end training\nDist: %d', int64(dist_to_target));
 hudstr = textscan(hudstr, '%s', 'delimiter', '\n');
 hudtext.string = hudstr{1};

 % keep user on trial with no delay
 if (reached_target)
 %save timer to beginning of array, so I don't have to make
 %a new var
 times(1) = toc(timer_trial);

 % get distance to latch center
 latch_velocities = latchPosition - effector.translation;
 latch_velocities = latch_velocities ./ latch_max;
 latch_loop = latch_max;

 sim_state = 'training_latch';
 fprintf('Passed training exercise %d\n', trial_attempts);
 trial_attempts = trial_attempts + 1;
 training_number = training_number + 1;
 end

 % press 3 to reset
 if (button(joy, 3) == 1)
 effector.translation = originalTranslation;
 effector.rotation = originalRotation;
 end

 % press 4 to begin testing
 if (button(joy, 4) == 1)
 trial_number = 1;
 sim_state = 'wait_trial';
 disp('Training Ended');
 end

 case 'training_latch'
 block_signal = 1;
 hudstr = sprintf('>> LATCHED <<\nPress ''3'' to start new

trial\n');
 hudstr = textscan(hudstr, '%s', 'delimiter', '\n');
 hudtext.string = hudstr{1};

 % latch to center
 % effector.translation = latchPosition;
 if(latch_loop > 0)
 effector.translation = effector.translation +

latch_velocities;
 latch_loop = latch_loop - 1;
 end

 bottom_box.appearance.material.diffuseColor = [0 1 0];
 top_box.appearance.material.diffuseColor = [0 1 0];
 left_box.appearance.material.diffuseColor = [0 1 0];

Project Sponsored by the NASA – NY Space Grant Fellowship || 17

 right_box.appearance.material.diffuseColor = [0 1 0];

 if (button(joy, 3) == 1)
 % record testing data
 if testing
 % calculate column
 if training_number <= 22
 excol1 = char(0);
 excol2 = char(training_number+67);
 else
 decm = floor(training_number/22);
 excol1 = char(decm+64);
 excol2 = char(training_number-(decm*22)+64);
 end
 excol = [excol1 excol2 num2str(row_num)];

 xlswrite(file, times(1), 'training', excol);

 %CSV write
 % fprintf('offset - %d\tn - %d\', csv_offset, n);
 % dlmwrite(csv_file,joy_data,'delimiter',',','-append');
 end

 training_number = training_number + 1;

 while(button(joy, 3)), end
 sim_state = 'wait_training';
 continue;
 end

 case 'wait_training'
 block_signal = 1;

 %CSV
 % n = 1;
 % joy_data = [0 0 0 0 0 0 0];

 effector.translation = originalTranslation;
 effector.rotation = originalRotation;

 bottom_box.appearance.material.diffuseColor = [1 0 0];
 top_box.appearance.material.diffuseColor = [1 0 0];
 left_box.appearance.material.diffuseColor = [1 0 0];
 right_box.appearance.material.diffuseColor = [1 0 0];

 hudstr = sprintf('-- WAITING --\nPress ''3'' to start

training\n');
 hudstr = textscan(hudstr, '%s', 'delimiter', '\n');
 hudtext.string = hudstr{1};

 % press 3 to start trial
 if (button(joy, 3) == 1)
 while(button(joy, 3)), end
 sim_state = 'training';
 timer_trial = tic;

Project Sponsored by the NASA – NY Space Grant Fellowship || 18

 end

 case 'wait_trial'
 block_signal = 1;

 if trial_number > 15
 sim_state = 'testing_complete';
 continue
 end

 % hold position at start
 effector.translation = originalTranslation;
 effector.rotation = originalRotation;

 hit_count = 0;
 trial_attempts = 1;

 % reset box color
 bottom_box.appearance.material.diffuseColor = [1 0 0];
 top_box.appearance.material.diffuseColor = [1 0 0];
 left_box.appearance.material.diffuseColor = [1 0 0];
 right_box.appearance.material.diffuseColor = [1 0 0];

 hudstr = sprintf('-- WAITING - TRIAL %d --\nPress ''3'' to start

trial\n', trial_number);
 hudstr = textscan(hudstr, '%s', 'delimiter', '\n');
 hudtext.string = hudstr{1};

 % press 3 to start trial
 if (button(joy, 3) == 1)
 while(button(joy, 3)), end
 sim_state = 'start_trial';
 delay_to_use = delay_ms(trial_number);
 fprintf('Beginning trial %d with delay of %dms\n',

trial_number, delay_to_use);
 timer_trial = tic;
 end

 case 'start_trial'
 block_signal = 0;

 %CSV
 n = 1;
 joy_data_abs = 0;
 joy_data = [0 0 0 0 0 0 0];

 % calculate excel rows
 if trial_number <= 22
 excol1 = char(0);
 excol2 = char(trial_number+67);
 else
 decm = floor(trial_number/22);
 excol1 = char(decm+64);
 excol2 = char(trial_number-(decm*22)+64);
 end

Project Sponsored by the NASA – NY Space Grant Fellowship || 19

 excol = [excol1 excol2 num2str(row_num)];
 %reset position and zero inputs
 effector.translation = originalTranslation;
 effector.rotation = originalRotation;
 v = zeros(1, 7);
 buffer(:,:)=0;

 hudstr = sprintf('-- TRIAL %d --\nPress ''3'' to restart

trial\n', trial_number);
 hudstr = textscan(hudstr, '%s', 'delimiter', '\n');
 hudtext.string = hudstr{1};

 % begin execution loop
 sim_state = 'execute_trial';
 continue;

 case 'execute_trial'
 block_signal = 0;
 n = n + 1;
 joy_data_abs = joy_data_abs + joy_data_interval;
 % wait for user to reach target

 if(reached_target)
 % get distance to latch center
 latch_velocities = latchPosition - effector.translation;
 latch_velocities = latch_velocities ./ latch_max;
 latch_loop = latch_max;

 sim_state = 'pass_trial';
 continue;
 end

 % HUD
 hudstr = sprintf('-- TRIAL %d --\nPress ''3'' to restart

trial\nDist: %d', trial_number, int64(dist_to_target));
 hudstr = textscan(hudstr, '%s', 'delimiter', '\n');
 hudtext.string = hudstr{1};

 % press 3 to restart trial
 if (button(joy, 3) == 1)
 while(button(joy, 3)), end
 sim_state = 'start_trial';
 fprintf('Retry trial %d\n', trial_number);

 % restart trial and timer
 trial_attempts = trial_attempts + 1;
 timer_trial = tic;
 end

 case 'pass_trial'
 block_signal = 1;
 % stop timer
 times(trial_number) = toc(timer_trial);

Project Sponsored by the NASA – NY Space Grant Fellowship || 20

 % write success
 fprintf('Passed trial %d after %f seconds\n', trial_number,

times(trial_number));

 % move to next trial

 sim_state = 'latch';
 continue;

 case 'latch'
 block_signal = 1;
 hudstr = sprintf('>> LATCHED <<\nPress ''3'' to start new

trial\n');
 hudstr = textscan(hudstr, '%s', 'delimiter', '\n');
 hudtext.string = hudstr{1};

 % latch to center
 % effector.translation = latchPosition;
 if(latch_loop > 0)
 effector.translation = effector.translation +

latch_velocities;
 latch_loop = latch_loop - 1;
 end

 bottom_box.appearance.material.diffuseColor = [0 1 0];
 top_box.appearance.material.diffuseColor = [0 1 0];
 left_box.appearance.material.diffuseColor = [0 1 0];
 right_box.appearance.material.diffuseColor = [0 1 0];

 if (button(joy, 3) == 1)
 % mark time to completion in Excel file
 if testing
 xlswrite(file, times(trial_number), 'times', excol);
 xlswrite(file, hit_count, 'hit count', excol);
 xlswrite(file, trial_attempts, 'trial attempts', excol);
 % xlswrite(file, 1, 4, excol);

 % CSV
 dlmwrite(csv_file,joy_data,'delimiter',',','-append');
 end

 trial_number = trial_number + 1;

 while(button(joy, 3)), end
 if trial_number < 16
 sim_state = 'wait_trial';
 else
 sim_state = 'testing_complete';
 end
 continue;
 end

 case 'testing_complete'
 fprintf('Testing complete!\n');

Project Sponsored by the NASA – NY Space Grant Fellowship || 21

 hudstr = sprintf('TESTING COMPLETE!\n');
 hudstr = textscan(hudstr, '%s', 'delimiter', '\n');
 hudtext.string = hudstr{1};
 input('press enter to exit');
 sim_state = 'end';

 case 'end'
 close(fig);

 otherwise
 disp('Unknown state %s!\n', sim_state);
 end

 % add .025s delay to each iteration (e.g. trial_number of 4 selects from

4th row providing .1s delay)
 tSimLoopElapsed = toc(tSimLoop);
 if (tSimLoopElapsed < 0.025)
 pause (0.025 - tSimLoopElapsed);
 else
 % don't need to add delay

 %fprintf('loop was %f seconds\n', tSimLoopElapsed);
 end
 % pause(0.025);

%% COLLISION CHECKING?
%---
% check if the effector has reached the pink box

% TL 0.35 76.12 187.78
% BR -1.80 73.77 187.78

 pos = effector.translation;
 % pos = [left/right up/down front/back]
 if ((pos(1) >= -1.80) && (pos(1) <= 0.35)) && ((pos(2) >= 73.77) &&

(pos(2) <= 76.12)) && ((pos(3) >= 187.9) && (pos(3) <= 191.7))
 reached_target = 1;
 force(joy, 2, 1);

 else
 % hit satellite box
 if ((pos(1) >= -5.36) && (pos(1) <= 3.67)) && ((pos(2) >= 65.32) &&

(pos(2) <= 82.2)) && ((pos(3) >= 187.9) && (pos(3) <= 197.9))
 % front collision
 if (pos(3) >= 187.9) && (pos(3) <= 188.9)
 force(joy, 2, -1);
 fprintf('front collision\n');
 bounce_dir = 3;

 % back collision
 elseif (pos(3) >= 191.7) && (pos(3) <= 190.7)
 force(joy, 2, 1);
 fprintf('back collision\n');
 bounce_dir = 3;

Project Sponsored by the NASA – NY Space Grant Fellowship || 22

 % left collision
 elseif (pos(1) >= 2.67) && (pos(1) <= 3.67)
 force(joy, 1, 1);
 fprintf('left collision\n');
 bounce_dir = 1;

 % right collision
 elseif (pos(1) >= -5.36) && (pos(1) <= -4.36)
 force(joy, 1, -1);
 fprintf('right collision\n');
 bounce_dir = 1;

 % top collision
 elseif (pos(2) >= 81.2) && (pos(1) <= 82.2)
 force(joy, 2, -1);
 fprintf('top collision\n');
 bounce_dir = 2;

 % bottom collision
 elseif (pos(2) >= 65.32) && (pos(1) <= 66.32)
 force(joy, 2, 1);
 fprintf('bottom collision\n');
 bounce_dir = 2;

 % really bad driving
 else

 end

 %force(joy, joy_axis, joy_force);
 hit_count = hit_count + 1;
 %fprintf('Collisions: %d\n', hit_count);
 bounce = bounce_max;

 % enforce minimum bounce so we don't stay in satellite
 if (v(bounce_dir) < .01) && (v(bounce_dir) >= 0)
 v_bounce = -.01;
 elseif (v(bounce_dir) > -.01) && (v(bounce_dir) <= 0)
 v_bounce = .01;
 else
 v_bounce = -v(bounce_dir);
 end

 else
 force(joy, 2, 0);
 end

 reached_target = 0;
 end

 %% DEBUGGING
%---

 % Position
 if (button(joy, 9))

Project Sponsored by the NASA – NY Space Grant Fellowship || 23

 disp(pos);
 end

 % Velocity
 if (button(joy, 10))
 disp(v);
 end

 %% DISTANCE CALC
%---
 err_x = latchPosition(1) - effector.translation(1);
 err_y = latchPosition(2) - effector.translation(2);
 err_z = latchPosition(3) - effector.translation(3);

 dist_to_target = sqrt(err_x ^ 2 + err_y ^ 2 + err_z ^ 2);

%% CALCULATE NEW POSITION
%---

 if bounce > 0
 bounce = bounce - 1;

 v(bounce_dir) = v_bounce; % .*((bounce_max - bounce)./bounce_max);
 end

 if (~block_signal) %~(strcmp(sim_state, 'latch') == 1 ||

strcmp(sim_state, 'training_latch') == 1)
 % set new positions by adding the velocity vectors
 effector.translation = effector.translation + [-1 1 -1].*v(1:3);
 effector.rotation = [-1 1 -1 1].*v(4:7);
 end

 % tSimLoopElapsed = toc(tSimLoop);
 % disp(toc(tAbsLoop)); % time per loop (with controlled delay)
 % disp(tSimLoopElapsed);

 % redraw the virtual scene
 vrdrawnow;

 %% WRITING JOYSTICK TO FILE
%--
 joy_data(n, 1) = delay_number(trial_number) * 40;
 joy_data(n, 2) = joy_data_abs; % n * .025;
 joy_data(n, 3) = roll;
 joy_data(n, 4) = pitch;
 joy_data(n, 5) = yaw;
 joy_data(n, 6) = throttle;
 joy_data(n, 7) = front_back;

% end simulation loop
end

%% CLEAR WORKSPACE
%---

Project Sponsored by the NASA – NY Space Grant Fellowship || 24

% close the vrfigure
% close(fig);

% close the vrworld
close(w);

% clear all used variables
% clear all;
disp('The simulation has ended');

Project Sponsored by the NASA – NY Space Grant Fellowship || 25

APPENDIX III: MATLAB POWER SPECTRAL DENSITY SOURCE CODE

%%%
% This function calculates the single-sided Power Specral Density (PSD) of
% a real signal and the frequency of the PSD
%%%
% the code is partially adopted from Porat, B., “A Course in Digital Signal
% Processing”, Wiley, ISBN 0471149616, 1997
%%%

% Syntax: [P,F] = smPSD(Input,Time)
% Inputs:
% 1. Input == Input signal
% 2. Time == Time vector OR a sampling frequency in Hz
% Outputs:
% 1. P == PSD estimate
% 2. F == Frequency vector (Hz)

% PROGRAMMER: Kirill Zaychik
%
% $ STATUS: beta testing $
% $ Revision: 1.0 $
% $ Date: 2011/07/06 13:36:41 $

function [P, f] = smPSD(x,FS)

len = length(x);
if length(FS) > 1
 Fs = 1/(FS(2) - FS(1));
 time = FS;
else
 Fs = FS;
 time = 0:1/Fs:(len - 1)/Fs;
end

% zeropad the signal to the length of FFT
xz=[x' zeros(1, 2^nextpow2(length(x))-len)];

if ~rem(len,2), % determine the length of the window, it must be odd
 lwin=len-1;
else
 lwin=len;
end

itime = time(1:lwin);
w = .54-.46*cos(2*pi*itime/time(end)); % Hamming window
% w = sqrt(2/3)*(1-cos(2*pi*itime/time(end))); % Hann window
% w = .42-.5*cos(2*pi*itime/time(end))+.08*cos(4*pi*itime/time(end)); %

Blackman window

xz = reshape(xz,1,length(xz));
kappa = (1/length(xz))*conv(xz,fliplr(xz));

Project Sponsored by the NASA – NY Space Grant Fellowship || 26

n = 0.5*(length(kappa)-length(w));
s = fft([zeros(1,n),w,zeros(1,n)].*kappa);
P = abs(s(1:length(xz))); % PSD

df = Fs/length(P)/2;
f = 0:df:Fs/2-df; % frequency vector

